Exploring simplicial constructions for un-delooped K-Theory

Guillot Pierre-Louis

under the supervision of Dr. B. Koeck

Sorbonnes University – Paris centre pure maths master's degree

September 27, 2023

Summary

- Introduction
- 2 Defining the G-construction
- 4 Defining $wG.\mathcal{M}$

Section 1

Introduction

K-Theory

Idea behind K-Theory : define groups ("K-groups") related to vector spaces on various mathematical objects

- Algebraic objects : schemes, rings, varieties
- ► Topological spaces, Manifold, and more...

Originally: finite number of algebraically defined groups (e.g. the Grothendieck group)

Nowadays: homotopy groups of topogical spaces

K-Theory of algebraic objects

This report: K-Theory of algebraic objects, ie a scheme X.

 $\operatorname{Vect}(X)$ the category of locally free sheaves of finite rank over X is **exact**.

- => We define the K-Theory of an exact category
- => This is how we define the K-Theory of an algebraic object

Classical constructions 1/2

In [Qui72], Quillen introduces the **Q-construction**. Let $\mathcal M$ be an exact category. Its Q-construction is category $Q\mathcal M$:

- lacktriangle Objects are the same as ${\cal M}$
- lacktriangle Morphisms between objects M and M'' are equivalence classes of diagram

$$M \leftarrow M' \hookrightarrow M''$$

K-groups := homotopy groups of classifying space BQM

Classical constructions 2/2

In [Wal85], Waldhausen introduces the **S-construction** of a Waldhausen category.

"Waldhausen categories" is a generalization of exact categories. Let \mathcal{C} be a Waldhausen category. Its S-construction is a simplicial category wS.C.

K-groups := homotopy group of realization |wS.C|

The G-construction

In this report we discuss a third construction, the **G-construction**. Introduced in [GG87] by Gilet and Grayson.

For an exact category $\mathcal M$ its G-construction is a simplicial set $G\mathcal M$.

K-groups := homotopy group of realization $|GM| \dots$

The G-construction

In this report we discuss a third construction, the **G-construction**. Introduced in [GG87] by Gilet and Grayson.

For an exact category $\mathcal M$ its G-construction is a simplicial set $G\mathcal M$.

 $\mathsf{K} ext{-groups} := \mathsf{homotopy} \ \mathsf{group} \ \mathsf{of} \ \mathsf{realization} \ |\mathit{G}\mathcal{M}| \ \dots$

... with **no shift in degree**!

"No shift in degree" feature 1/2

Whereas i-th K-group is $\pi_{i+1}(BQ\mathcal{M})$ for Q-construction For the G-construction i-th K-group is $\pi_i(|G\mathcal{M}|)$.

 ΩBQM provides K-group with no shift

 \Rightarrow Idea : create an analogue to the loop space for simplicial set Goal : when realized homotopy-equivalent to loop space of realization

"No shift in degree" feature 2/2

PRACTICAL APPLICATION

 λ -rings generalizes the exterior product \wedge^i on the ring $(K_0(R), \otimes)$. We want to generalize such " λ -operation" operation to higher K-groups.

In [Gra89], Grayson defines λ -operation on the G-construction. ⇒ Induces continuous mapping on the realization On K_0 , \wedge^k for k > 1 is **not group homomorphism** $K_0(R) = \pi_1(BQ(P(R)))$ so continuous function induce group homomorphism

The $S^{-1}S$ construction

Let $\mathcal M$ be an exact category where all sequence split. Then category $S^{-1}S$ ([Gra] [CWe]) is the category s.t. Objects: pairs (M,N) of objects of $\mathcal M$ Morphisms $(M,N)\longrightarrow (M',N')$: isomorphism class of objects P with isomorphisms $M\oplus P\simeq M'$ and $N\oplus P\simeq N'$ K-groups:= homotopy group of classifying space $B(S^{-1}S)$ with **no shift in degree**!

Section 2

Defining the G-construction

Waldhausen category 1/2

A Waldhausen category is a category equipped with cofibrations

$$A \rightarrowtail B$$

and weak equivalences

$$A \xrightarrow{\sim} B$$

Satisfying certain axioms.

Motivating examples :

- Exact category with admissible monomorphism as cofibration and isomorphism as weak equivalence.
- ightharpoonup Categories of complexes in some exact categories (eg complexes in ${
 m Vect}(X)$) with object-wise admissible monomorphism as cofibrations and quasi-isomorphisms as weak equivalences

Waldhausen category 2/2

Note

In a Waldhausen category $\ensuremath{\mathcal{C}}$ there exists pushout along cofibrations and a zero element *.

Let $A \rightarrow B$ be a cofibration we denote by B/A the pushout of diagram

$$\begin{array}{c} A \rightarrowtail B \\ \downarrow \\ * \end{array}$$

It generalizes the notion of quotient in an exact category.

Waldhausen's S-construction 1/2

Let C be a Waldhausen category, $wS.\mathcal{C}$ is a **simplicial category**, ie a morphism $\Delta^{\mathrm{op}} \longrightarrow \mathrm{Cat}$.

Category $wS.\mathcal{C}([n])$ is the category of sequences of cofibrations of length n in $\mathcal C$

$$C_1 \longrightarrow ... \rightarrowtail C_n$$

Along with a choice of quotient $C_{i,j} = C_j/C_j$ for all $0 < i < j \le n$. Morphisms are morphisms of diagrams that are object-wise weak-equivalence

$$C_1 \longmapsto \dots \longmapsto C_n$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$C_1 \longmapsto \dots \longmapsto C_n$$

Waldhausen's S-construction 2/2

From wS.C we get :

- ▶ A simplicial set denoted SC by only considering the objects in each wS.C([n])
- lacktriangle A **bisimplicial set** also denoted as $wS.\mathcal{C}$ by post-composing with N

Lemma

When $\mathcal C$ is an exact category with canonical Waldhausen structure $|wS.\mathcal C|$ and $|S\mathcal C|$ are homotopically equivalent.

Constructing unshifted K-Theory space

 ${\mathcal M}$ an exact category

S-construction

$$\mathcal{M} \stackrel{S}{\mapsto} S\mathcal{M} \stackrel{|-|}{\mapsto} |S\mathcal{M}| \stackrel{\Omega}{\mapsto} \Omega |S\mathcal{M}|$$

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

G-construction

$$\mathcal{M} \overset{S}{\mapsto} S\mathcal{M} \overset{?}{\longmapsto} ?(S\mathcal{M}) \overset{|-|}{\longmapsto} |?(S\mathcal{M})|$$

$$\uparrow$$
simplicial set

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

Loop spaces

Definition

Let X be a topological space. The **topological loop space** ΩX of X with basepoint $x_0 \in X$ is the space of paths $\gamma: I \longrightarrow X$ s.t. $\gamma(0) = \gamma(1) = x_0$ with compact-open topology.

Definition

Let X be a simplicial set. The **simplicial loop space** of X with basepoint $x_0 \in X_0$ is the simplicial set ΩX such that forall $n \geq 0$

$$\Omega X([n]) := \lim_{\leftarrow} \left(\begin{array}{ccc} \{x_0\} & \longrightarrow & X([0]) & \longleftarrow & X([0][n]) \\ & & & \downarrow & \downarrow \\ & & & X([0][n]) & \stackrel{X(\mu_R)}{\longrightarrow} & X([n]) \end{array} \right)$$

Loop spaces

In Δ given $k,n\geq 0$ $[k][n]=\{0<\ldots< k<(k+1)+0<\ldots<(k+1)+n\}$ $\mu_L:[k]\to [k][n] \text{ the inclusion on the left}$ $\mu_R:[n]\to [k][n] \text{ the inclusion on the right}$ Here with $\mathbf{k}=\mathbf{0}$

Elements in
$$\Omega X([n])$$
 are pairs (x_{n+1}, x'_{n+1}) such that $X(\mu_L)(x_{n+1}) = X(\mu_L)(x'_{n+1}) = x_0$ and $X(\mu_R)(x_{n+1}) = X(\mu_R)(x'_{n+1})$.

The G-construction

Definition

The G-construction of an exact category \mathcal{M} is $\Omega S\mathcal{M}$.

For $n \geq 0$, $\Omega S\mathcal{M}([n])$ is the set of pairs of sequence of monomorphisms

$$M:= (M_0 \hookrightarrow M_1 \hookrightarrow \ldots \hookrightarrow M_n)$$

$$N:= (N_0 \hookrightarrow N_1 \hookrightarrow \ldots \hookrightarrow N_n)$$

along with choices of quotient such that

$$N_j/N_i = M_j/M_i$$
 for all $0 \le i < j \le n$

because

$$SM(\mu_R)(M) = M_1/M_0 \hookrightarrow ... \hookrightarrow M_n/M_0$$

must equal

$$SM(\mu_R)(N) = N_1/N_0 \hookrightarrow ... \hookrightarrow N_n/N_0$$

Relation to $N(S^{-1}S)$

The vertices are $\Omega SM([0]) = \mathrm{Ob}(\mathcal{M}) \times \mathrm{Ob}(\mathcal{M})$ and the edges are $\Omega SM([1])$ consisting of pairs of sequences

$$\left(\begin{array}{c} M_0 & \hookrightarrow & M_1 \\ N_0 & \hookrightarrow & N_1 \end{array}\right)$$

with one choice of quotient $C := N_1/N_0 = M_0/M_1$.

Corresponds to pairs of exact sequences $N_0 \hookrightarrow N_1 \twoheadrightarrow C$ and $M_0 \hookrightarrow M_1 \twoheadrightarrow C$.

If all exact sequences split $M_1 \simeq C \oplus M_0$ and $N_1 \simeq C \oplus N_0$ and the edge corresponds to a morphism in $S^{-1}S$.

What we need to prove

Claim 1

For any simplicial set X there is a map $|\Omega X| \longrightarrow \Omega |X|$

Claim 2

 $|\Omega S\mathcal{M}| \longrightarrow \Omega |S\mathcal{M}|$ is a homotopy equivalence

This is [GG87]'s Theorem 3.1

Section 3

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

Right fiber of F over ρ

Definition

Let $F: X \longrightarrow Y$ be a morphism of simplicial sets, $n \ge 0$ and $\rho \in Y_n$. We define $\rho|F$ the **right fiber of** F **over** ρ such that

$$(\rho|F)([k]) := \lim_{\leftarrow} \begin{pmatrix} X([k]) \\ \downarrow^F \\ Y([n][k]) \xrightarrow{Y(\mu_R)} Y([k]) \\ \downarrow^{Y(\mu_L)} \\ \{\rho\} & \longleftarrow & Y([n]) \end{pmatrix}$$

When $F = \operatorname{id}_Y$ we denote $\rho | F$ by $\rho | Y$.

Lemma

 $|\rho| Y|$ is contractible.

Proving Claim 1

Given X a simplicial set and $x_0 \in X_0$ a base point we have a commutative diagram

$$\Omega X \longrightarrow x_0 | X
\downarrow \qquad \qquad \downarrow
x_0 | X \longrightarrow X$$
(1)

Map from $|\Omega X|$ to the homotopy pullback of $|x_0|X| \to |X| \leftarrow |x_0|X|$ which is homotopy equivalent to $\Omega |X|$ because $|x_0|X|$ is contractible.

We proved Claim 1 and if (1) is homotopy cartesian $|\Omega X| \to \Omega |X|$ is a homotopy equivalence.

Introduction

Let $F: X \longrightarrow Y$ be a morphism of simplicial sets.

Theorem B'

If for $n \geq 0$, $\tau \in Y_n$ and $\phi : [m] \longrightarrow [n]$ the induced $\tau | F \longrightarrow \phi^*(\tau) | F$ is a homotopy equivalence. Then for any $l \geq 0$, $\rho \in X_l$ square

$$\begin{array}{ccc} \rho|F & \longrightarrow & X \\ \downarrow & & \downarrow_F \\ \rho|Y & \longrightarrow & Y \end{array}$$

is homotopy cartesian

Theorem B' generalizes [Qui72] Theorem B. Similarly there is a generalization of [Qui72] Theorem A

Using Theorem B'

Let X be a simplicial set and $x_0 \in X_0$. Consider

$$P: \qquad x_0|X \longrightarrow X$$

$$x_{k+1} \longmapsto X(\mu_R)(x_{k+1})$$

Definition

Let $\rho \in X_n$ the right fiber $\rho | P$ is denoted $(x_0, \rho | X)$

We can check that $(x_0, x_0|X) = (x_0|P)$ is ΩX with base point x_0 .

Corollary of Theorem B'

Let X be a simplicial set and $x_0 \in X_0$ be a base point. Assume that for any $\rho \in X_n$ and $\phi: [m] \longrightarrow [n]$ we have that $(x_0, \rho|X) \longrightarrow (x_0, \phi^*(\rho)|X)$ is a homotopy equivalence then $|\Omega X| \longrightarrow \Omega |X|$ is a homotopy equivalence

Strategy for proving Claim 2

Goal : apply corollary to X = SM

Prove the hypothesis is true for all $\phi : [m] \longrightarrow [n]$ and $\tau \in SM(n)$.

In practice we only need to show it on a finite number of well-chosen ϕ to conclude

Elements in $(0, \tau | SM)$

For $n \geq 0$ and $M = (M_1 \hookrightarrow ... \hookrightarrow M_n)$ elements of (0, M|SM)([l]) are pairs

$$\begin{pmatrix} L_0 \hookrightarrow L_1 \hookrightarrow \dots \hookrightarrow L_l \\ M_1 \hookrightarrow \dots \hookrightarrow M_n \hookrightarrow K_0 \hookrightarrow K_1 \hookrightarrow \dots \hookrightarrow K_l \end{pmatrix}$$

such that $L_j/L_i \simeq K_j/K_i$ for all $0 \le i < j \le l$ + choice of quotient for each K_j/K_i for all $0 \le i < j \le l$ + choice of quotient for each K_j/M_i for all $0 \le i \le l$ and $0 \le j \le n$

First case

Let $m \geq 0$ and $M \in S\mathcal{M}([m])$.

Consider $\eta:[1] \longrightarrow [m]$ s.t. $\eta(0)=0$ and $\eta(1)=m$ then :

$$F: (0, M|S\mathcal{M})([n]) \longrightarrow (0, \eta^*(M)|S\mathcal{M})([n])$$

$$\begin{pmatrix}
L_0 \hookrightarrow \dots \hookrightarrow L_n \\
M_1 \hookrightarrow \dots \hookrightarrow M_m \hookrightarrow K_0 \hookrightarrow \dots \hookrightarrow K_n
\end{pmatrix} \mapsto \begin{pmatrix}
L_0 \hookrightarrow \dots \hookrightarrow L_n \\
M_m \hookrightarrow K_0 \hookrightarrow \dots \hookrightarrow K_n
\end{pmatrix}$$

We define a mapping $G:(0,\eta^*(M)|S\mathcal{M})([n])\longrightarrow (0,M|S\mathcal{M})([n])$ that sets arbitrary quotients for K_i/M_j .

⇒ **Not** an isomorphism, but a homotopy equivalence.

$$G \circ F \simeq id$$
 $F \circ G = id$

Homotopic map towards (0, M|SM)

Very useful trick in these proofs

Let X be a simplicial set and $f, g: X \to (0, M|SM)$ be two maps.

Assumption : each $x_n \in X_n$ there is an isomorphism $\phi_{x_n}: f(x_n) \simeq g(x_n)$ which corresponds to a family of isomorphisms that makes the following diagram commute

$$L_0 \hookrightarrow \ldots \hookrightarrow L_n$$

$$M_1 \hookrightarrow \ldots \hookrightarrow M_m \longleftrightarrow K_0 \hookrightarrow \ldots \longleftrightarrow K_n$$

$$L'_0 \hookrightarrow \ldots \longleftrightarrow L'_n$$

$$M_1 \hookrightarrow \ldots \hookrightarrow M_m \hookrightarrow K'_0 \hookrightarrow \ldots \hookrightarrow K'_n$$

in a way compatible with images of morphisms Δ .

Consequence: f and g are homotopic.

Second case

Let $m \geq 0$ and $N \in \mathcal{M}$.

Consider $f, g : [0] \longrightarrow [1]$ s.t. f(0) = 0 and g(0) = 1 and consider :

$$f^*, g^* : (0, \widehat{N}|S\mathcal{M})([n]) \longrightarrow (0, 0|S\mathcal{M})([n])$$

such that

$$f^*: \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ N \hookrightarrow K_0 \hookrightarrow \ldots \hookrightarrow K_n \end{array}\right) \mapsto \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ K_0 \hookrightarrow \ldots \hookrightarrow K_n \end{array}\right)$$

and

$$g^*: \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ N \hookrightarrow K_0 \hookrightarrow \ldots \hookrightarrow K_n \end{array} \right) \mapsto \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ K_0/N \hookrightarrow \ldots \hookrightarrow K_n/N \end{array} \right)$$

we want to show they are homotopy equivalences

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

Second case

Consider also $H: (0,0|S\mathcal{M})([n]) \longrightarrow (0,\widehat{N}|S\mathcal{M})([n])$ such that

$$H: \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ K_0 \hookrightarrow \ldots \hookrightarrow K_n \end{array}\right) \mapsto \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ N \hookrightarrow N \oplus K_0 \hookrightarrow \ldots \hookrightarrow N \oplus K_n \end{array}\right)$$

We have $g^*\circ H=\mathrm{id}$, and we admit that $f^*\circ H$ is a homotopy equivalence. Therefore it is enough to show that $H\circ g^*$ is homotopic to id .

Second case

Explicitely for $J := H \circ g^*$ we have

$$J: \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ N \hookrightarrow K_0 \hookrightarrow \ldots \hookrightarrow K_n \end{array}\right) \mapsto \left(\begin{array}{c} L_0 \hookrightarrow \ldots \hookrightarrow L_n \\ N \hookrightarrow N \oplus K_0/N \hookrightarrow \ldots \hookrightarrow N \oplus K_n/N \end{array}\right)$$

To prove it is homotopic id we provide $|(0,\widehat{N}|S\mathcal{M})|$ with a H-space structure using

$$\begin{pmatrix} L_0 \hookrightarrow \dots \hookrightarrow L_n \\ N \hookrightarrow K_0 \hookrightarrow \dots \hookrightarrow K_n \end{pmatrix} + \begin{pmatrix} L'_0 \hookrightarrow \dots \hookrightarrow L'_n \\ N \hookrightarrow K'_0 \hookrightarrow \dots \hookrightarrow K'_n \end{pmatrix}$$

$$= \begin{pmatrix} L_0 \oplus L'_0 \hookrightarrow \dots \hookrightarrow L_n \oplus L'_n \\ N \hookrightarrow K_0 \coprod_N K'_0 \hookrightarrow \dots \hookrightarrow K_n \coprod_N K'_n \end{pmatrix}$$

Second case

We use the following fact in exact categories

Lemma

Let $N \rightarrowtail M$ be a admissible monomorphism. There is a natural "isomorphism"

$$M \coprod_N M \simeq M \coprod_N (N \oplus M/N)$$

and deduce that |id| + |J| is homotopic to |id| + |id|.

We use topological result to provide an opposite to $|\mathrm{id}|$ by "+" and conclude. $\Rightarrow \eta^*$, f^* ang g^* are homotopy equivalences.

To conclude

For any m, n > 0 and $\phi : [m] \to [n]$ the diagram commutes in Δ

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

Where $\lambda(0) = \phi(0)$ and $\lambda(1) = n$. It induces for any $M \in SM([n])$.

The main theorem

Theorem

For $\mathcal M$ an exact category. $|\Omega\mathcal M| \to \Omega|\mathcal M|$ is a homotopy equivalence.

Section 4

Defining $wG.\mathcal{M}$

Proof that $|\Omega SM| \simeq_{\text{HoTop}} \Omega |SM|$

First introduced in [Gun+92].

Consider P- that shifts degree of simplicial object, ie such that $PX_n = X_{n+1}$. Define simplicial category wG.C such that the following is cartesian

$$wG.C \longrightarrow PwS.C$$

$$\downarrow \qquad \qquad \downarrow \delta_0$$

$$PwS.C \stackrel{\delta_0}{\longrightarrow} wS.C$$

where $(\delta_0)_n : PwS.C([n]) \to wS.C([n])$ corresponds to $wS.C(d_0)$.

The image by Ob is $GC := \Omega SC$.

If we post-compose with nerve functor we get a bisimplicial set $wG.\mathcal{C}.$

Lemma

Introduction

Let $\mathcal M$ be an exact category, canonically a Waldhausen category. Then $|wG.\mathcal C|$ and $|G\mathcal C|$ are homotopy equivalent.

G-construction of a Waldhausen category

Theorem

Let C be a Waldhausen category, if C is pseudo-additive,

$$|wG.C| \longrightarrow \Omega |wS.C|$$

Is a homotopy equivalence

Here pseudo-additive means that for all $N \rightarrowtail M$ we have a natural sequence of weak equivalences between $M \cup_N (N \lor (M/N))$ and $M \cup_N M$.

Examples

Waldhausen categories that are pseudo additive :

- Exact categories
- Complexes in ${\rm Vect}(X)$ for a scheme X with element-wise admissible monomorphism as cofibrations and quasi-isomorphisms as weak equivalences

Conclusion

Constructions for undelooped K-Theory

Construction	Category	"Additivity"	Example
$S^{-1}S$	split exact	$M \simeq N \oplus (M/N)$	P(R)
GM	exact	$M \coprod_{N} M \simeq M \coprod_{N} (N \oplus (M/N))$	Vect(X)
$wG.\mathcal{M}$	pseudo-additive	$M \coprod_{N} M \sim M \coprod_{N} (N \vee (M/N))$	CVect (X)

The proofs in [GG87] and [Gun+92] use the "pseudo-additivity" hypothesis in a very similar fashion !

References

[CWe] C.Weibel. The K-book: an introduction to algebraic K-theory.

[GG87] H. Gillet and D. R. Grayson. "The loop space of the Q-Construction". In: Illinois Journal of Mathematics 31.4 (1987), pp. 574–597.

D. R. Grayson. "Higher algebraic K-theory: II (after [Gra] Quillen)". In: Lecture Notes in Mathematics 551 (), pp. 217-240.

[Gra89] D. R. Grayson. "Exterior Power Operations on Higher K-Theory". In: K-Theory 3 (1989), pp. 247–260.

[Gun+92]T. Gunnarsson et al. "An un-delooped version of algebraic K-theory". In: Journal of Pure and Applied Algebra 79 (1992), pp. 255-270.

[Qui72] D. Quillen. "Higher algebraic K-Theory: I". In: Lecture Notes in Math. 341 (1972), pp. 79–139.