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K-Theory

|dea behind K-Theory : define groups ("K-groups”) related to
vector spaces on various mathematical objects

» Algebraic objects : schemes, rings, varieties
» Topological spaces, Manifold, and more...

Originally : finite number of algebraically defined groups
(e.g. the Grothendieck group)
Nowadays : homotopy groups of topogical spaces
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K-Theory of algebraic objects

This report: K-Theory of algebraic objects, ie a scheme X.

Vect(X) the category of locally free sheaves of finite rank over
X is exact.

=> We define the K-Theory of an exact category

=> This is how we define the K-Theory of an algebraic object
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Classical constructions 1/2

In [Qui72], Quillen introduces the Q-construction.
Let M be an exact category. Its Q-construction is category

QM
» Objects are the same as M

» Morphisms between objects M and M" are equivalence
classes of diagram

M« M — M

K-groups := homotopy groups of classifying space BOM
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Classical constructions 2/2

In [Wal85], Waldhausen introduces the S-construction of a
Waldhausen category.

"Waldhausen categories” is a generalization of exact categories.
Let C be a Waldhausen category. Its S-construction is a simpli-
cial category wS.C.

K-groups := homotopy group of realization |wS.C|
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The G-construction

In this report we discuss a third construction, the G-construction.
Introduced in [GG87] by Gilet and Grayson.
For an exact category M its G-construction is a simplicial set

GM.
K-groups := homotopy group of realization |GM]| ...
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The G-construction

In this report we discuss a third construction, the G-construction.
Introduced in [GG87] by Gilet and Grayson.
For an exact category M its G-construction is a simplicial set
GM.
K-groups := homotopy group of realization |GM]| ...

. with no shift in degree!
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“No shift in degree” feature 1/2

Whereas i-th K-group is 7,11 (BQM) for Q-construction
For the G-construction 4th K-group is m;(| GM]).

QBQM provides K-group with no shift

= |dea : create an analogue to the loop space for simplicial set
Goal : when realized homotopy-equivalent to loop space of re-
alization
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“No shift in degree” feature 2/2

PRACTICAL APPLICATION

A-rings generalizes the exterior product A® on the ring (Ky(R), ®).
We want to generalize such “\-operation” operation to higher
K-groups.

In [Gra89], Grayson defines A-operation on the G-construction.
= Induces continuous mapping on the realization

On K, , A for k> 1 is not group homomorphism

Ko(R) = m(BQ(P(R))) so continuous function induce group
homomorphism
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The S~ construction

Let M be an exact category where all sequence split.

Then category S5 ([Gra] [CWe]) is the category s.t.

Objects : pairs (M, N) of objects of M

Morphisms (M, N) — (M', N') : isomorphism class of objects
P with isomorphisms M& P~ M and N P~ N

K-groups := homotopy group of classifying space B(S719) ...
.. with no shift in degree!
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Section 2

Defining the G-construction
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Waldhausen category 1/2

A Waldhausen category is a category equipped with cofibrations
A— B

and weak equivalences

A— B

Satisfying certain axioms.
Motivating examples :

> Exact category with admissible monomorphism as cofibration and
isomorphism as weak equivalence.

> Categories of complexes in some exact categories (eg complexes in
Vect(X)) with object-wise admissible monomorphism as cofibrations and
quasi-isomorphisms as weak equivalences
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Waldhausen category 2/2

In a Waldhausen category C there exists pushout along cofibrations and a zero
element *.
Let A — B be a cofibration we denote by B/ A the pushout of diagram

A>—+ B

!

*

It generalizes the notion of quotient in an exact category.
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Waldhausen’s S-construction 1/2

Let C be a Waldhausen category, wS.C is a simplicial category, ie a morphism
A°P — Cat.
Category wS.C([n]) is the category of sequences of cofibrations of length n in C

CL —— ... —— Cy

Along with a choice of quotient Ci; = C;/Cjforall 0 < i< j< n.
Morphisms are morphisms of diagrams that are object-wise weak-equivalence

CL —— . —— Cy

|- |-

O, —s ... —— C,
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Waldhausen’s S-construction 2/2

From wS.C we get :

> A simplicial set denoted SC by only considering the objects in each
wS.C([n])

> A bisimplicial set also denoted as wS.C by post-composing with N

When C is an exact category with canonical Waldhausen structure |wS.C| and
|SC| are homotopically equivalent.
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Constructing unshifted K-Theory space

M an exact category

S-construction
M Sy SM I 1SM] S QlsM|
G-construction

M By SM L 2(sm) s 25|

I

simplicial set
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Loop spaces

Definition

Let X be a topological space. The topological loop space 22X of X with
basepoint zp € X is the space of paths v : I — X s.t. v(0) = v(1) = 2o with
compact-open topology.

Definition

Let X be a simplicial set. The simplicial loop space of X with basepoint
10 € Xo is the simplicial set QX such that forall n > 0

{ao} —— X([0]) - X((0][n])
X([n]) := lim X(ur) X(ur)

o
X(1R)

X([0][n]) —— X([n])
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Loop spaces

In A given k,n >0
Kn)={0<..<k<(k+1)+0<..<(k+1)+n}
iy : [k] = [k][n] the inclusion on the left

wr : [n] — [K|[n] the inclusion on the right

Here with k = 0

Elements in QX([n]) are pairs (2,41, ,,,) such that
X(po) (@ni1) = X(pp)(2,10) = 20 and X(pg) (2ni1) = X(pr) (2511)-
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The G-construction

Definition
The G-construction of an exact category M is QSM.

For n >0, QSM([n]) is the set of pairs of sequence of monomorphisms
M= (My — My — ... — M,)
N:= (No =— Ny — ... — N,)

along with choices of quotient such that

because

must equal

20/42



Defining the G-construction
00000000080

Relation to N(S719)

The vertices are QSM([0]) = Ob(M) x Ob(M) and the edges are QSM([1])
consisting of pairs of sequences

My — My
N0‘—>N1

with one choice of quotient C':= Ny /Ny = My/M;.

Corresponds to pairs of exact sequences Ny — N1 — C'and My < M; —
C.

If all exact sequences split M; ~ C® My and Ny ~ C'&@ Ny and the edge
corresponds to a morphism in S~18.
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What we need to prove

For any simplicial set X there is a map |QX| — Q| X] J

|QSM| — Q|SM]| is a homotopy equivalence J

This is [GG87]'s Theorem 3.1
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Section 3

Proof that |QLSM | ~porop Q2| SM|
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Right fiber of F over p

Definition

Let F: X — Y be a morphism of simplicial sets, n > 0 and p € Y,. We
define p|F the right fiber of F' over p such that

X([K])

(p|F)([K]) = lim Y([R)[H) 242 y((K)

lY(ML)

{p} —— Y([n))

When F = idy we denote p|F by p|Y.

|p| Y| is contractible.
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Proving Claim 1

Given X a simplicial set and zp € Xo a base point we have a commutative
diagram
QX —— m|X

] ! (1)

| X —— X

Map from |QX] to the homotopy pullback of |20|X| — |X| < |20|X| which is
homotopy equivalent to Q| X| because |zp|X]| is contractible.

We proved and if (1) is homotopy cartesian |Q2X| — Q| X] is a homotopy
equivalence.
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Theorem B’

Let F': X — Y be a morphism of simplicial sets.

Theorem B’

If forn >0, 7 € Yy, and ¢ : [m] — [n] the induced 7|F — ¢*(7)|Fis a
homotopy equivalence. Then for any [ > 0, p € X, square

plF —— X

|k

plY — Y

is homotopy cartesian
v

Theorem B’ generalizes [Qui72] Theorem B. Similarly there is a generalization
of [Qui72] Theorem A
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Using Theorem B’

Let X be a simplicial set and xp € Xo. Consider
P: xo| X — X
Tt 1 — X(pr)(zey1)

Definition

Let p € X, the right fiber p|P is denoted (zo, p|X)

We can check that (zo, 70| X) = (20| P) is QX with base point .

Corollary of Theorem B’

Let X be a simplicial set and zp € X, be a base point. Assume that for any
p € X, and ¢ : [m] — [n] we have that (zo0, p|X) — (20, ¢"(p)|X) is a
homotopy equivalence then [2X] — Q| X]| is a homotopy equivalence
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Strategy for proving Claim 2

Goal : apply corollary to X = SM
Prove the hypothesis is true for all ¢ : [m] — [n] and 7 € SM(n).

In practice we only need to show it on a finite number of well-chosen ¢ to
conclude
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Elements in (0, 7|SM)

Forn>0and M= (M; — ... = M,) elements of (0, M|SM)([]) are pairs

Lo‘%L1‘—>...‘%Ll
My = ... > M, = Ky = Ki & ... = K|
such that L;/L; ~ K;/K; forall 0 < i< j<

+ choice of quotient for each K;/K; forall 0 < i< j<|
+ choice of quotient for each K;/M; forall 0 < i<land 0<j<n
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First case

Let m > 0 and M € SM([m]).
Consider 7 : [1] — [m] s.t. n(0) =0 and (1) = m then :

F: (0, MISM)([n]) — (0,7 (M)[SM)([n])
Ly — ... — L, Lo — ... — L,
My — ... M, - Ky~ ... > K, M, = Ky = ... = K,

We define a mapping G : (0,n*(M)|SM)([n]) — (0, M|SM)([n]) that sets
arbitrary quotients for K;/M;.
= Not an isomorphism, but a homotopy equivalence.

Go F~id FoG=1id

30/42



Proof that [QSM| ~goTop ©2[SM|
000000008000 000

Homotopic map towards (0, M|SM)

Very useful trick in these proofs

Let X be a simplicial set and f, g: X — (0, M|SM) be two maps.

Assumption : each z, € X, there is an isomorphism ¢, : flz,) ~ g(z,)
which corresponds to a family of isomorphisms that makes the following diagram
commute

L() — ... (_>Ln

Ml‘—>...‘—>Mm K()‘-}... Kn
Ly < ... L,
M, < ... M, = Ky < ... > K,

in a way compatible with images of morphisms A.
Consequence : fand g are homotopic.
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Second case

Let m>0and N e M.
Consider f, g: [0] — [1] s.t. f(0) =0 and ¢(0) = 1 and consider :

£ 9" (0, NISM)([n]) — (0,0]SM)([n])

such that
Lo — ... = L, Lo — ... = L,
f: —
N— Ky ... K, Ky = ... > K,
and
. Lo — ... = Ly, Lo — ... — L,
—
N— Ky = ...=> K, Ko/N < ... = K,/N

we want to show they are homotopy equivalences
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Second case

Consider also H : (0,0|.SM)([n]) — (0, N|SM)([n]) such that

Lo — ... = L, Ly — ... — L,

Ko = ... > K, N— N Ky~ ... > NpK,

We have ¢g* o H=id, and we admit that f* o H is a homotopy equivalence.
Therefore it is enough to show that Ho g* is homotopic to id.
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Second case

Explicitely for J:= Ho g* we have

Lo — ... = L, Lo —— ... —— L,

N< Ky = ... K, N< N®Ko/N< ... > No K,/N

To prove it is homotopic id we provide (0, N|SM)| with a H-space structure
using

Lo~ ... L, Ly — ... = L,
+

N< Ky = ... > K, N< Ky <= ... K,

Lo® Ly~ ... — L, ®L,

No K llyKo = ... = K [y Kn
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Second case

We use the following fact in exact categories

Let N — M be a admissible monomorphism. There is a natural “isomorphism”

M[[M~M][(N® M/N)
N N

and deduce that [|id| 4 |J] is homotopic to [id| + [id].

We use topological result to provide an opposite to |id| by "+" and conclude.
= n", f* ang g" are homotopy equivalences.
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To conclude

For any m,n > 0 and ¢ : [m] — [n] the diagram commutes in A

(] (0] 5 1] 4 [0] > [

| B Jm

(] ¢ [n] ¢—— [m]

Where A(0) = ¢(0) and A(1) = n. It induces for any M € SM([n]).

(0, M| SM) 5 (0,0SM) 4 (0, My0)|SM) L5 (0,01SM) <= (0, My |SM)

] o ()]

(0, MISM) ———2———5 (0, 6" (M)|SM)

P

id
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The main theorem

For M an exact category. |QM| — Q| M| is a homotopy equivalence.
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Section 4

Defining wG.M
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G-construction of a Waldhausen category

First introduced in [Gun+92].
Consider P— that shifts degree of simplicial object, ie such that PX,, = X, 1.
Define simplicial category wG.C such that the following is cartesian

wG.C —— PwS.C

| [

PwS.C —2 ws.C

where (do)n : PwS.C([n]) — wS.C([n]) corresponds to wS.C(dp).
The image by Ob is GC := Q.5C.
If we post-compose with nerve functor we get a bisimplicial set wG.C.

Let M be an exact category, canonically a Waldhausen category.
Then |wG.C| and |GC| are homotopy equivalent.
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G-construction of a Waldhausen category

Let C be a Waldhausen category, if C is pseudo-additive,

lwG.C| — QwS.C|

Is a homotopy equivalence

Here pseudo-additive means that for all N >— M we have a natural sequence of
weak equivalences between MUy (NV (M/N)) and MUy M.

Waldhausen categories that are pseudo additive :

- Exact categories

- Complexes in Vect(X) for a scheme X with element-wise admissible
monomorphism as cofibrations and quasi-isomorphisms as weak equivalences
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Conclusion

Constructions for undelooped K-Theory

Defining wG. M
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l Construction [ Category " Additivity” [ Example ‘
S1s split exact M~ N® (M/N) P(R)
GM exact My M~ M[[(N® (M/N)) | Vect(X)
wG.M pseudo-additive | M[[y M~ M]](NV (M/N)) | CVect(X)

The proofs in [GG87] and [Gun+92] use the "pseudo-additivity” hypothesis in a
very similar fashion !

41/42



References

Defining wG. M
[ee]e]e] ]

[CWe]

[GG87]

[Gra]

[Gra89]

[Gun+92]

[Qui72]

C.Weibel. The K-book: an introduction to algebraic
K-theory.

H. Gillet and D. R. Grayson. “The loop space of the
Q-Construction”. In: /llinois Journal of Mathematics
31.4 (1987), pp. 574-597.

D. R. Grayson. “Higher algebraic K-theory: Il (after
Quillen)”. In: Lecture Notes in Mathematics 551 (),
pp. 217-240.

D. R. Grayson. “Exterior Power Operations on Higher
K-Theory". In: K-Theory 3 (1989), pp. 247-260.

T. Gunnarsson et al. “An un-delooped version of
algebraic K-theory". In: Journal of Pure and Applied
Algebra 79 (1992), pp. 255-270.

D. Quillen. "Higher algebraic K-Theory: I". In: Lecture
Notes in Math. 341 (1972), pp. 79-139. 22/42



	Introduction
	Defining the G-construction
	Proof that |SM| HoTop |SM|
	Defining wG.M

